Criar uma Loja Virtual Grátis
- Dielectric Elastomers As Electromechanical Transducers : Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (2008, Hardcover) DOC, PDF, TXT

9780080474885
English

0080474888
This book describes one of the most promising classes of polymer-based smart materials and technologies for electromechanical transducers and "pseudo-muscular" actuation devices to be used in a very broad range of applications, spanning from robotics and automation to the biomedical field. This class of materials, known as "dielectric elastomers", belong to the larger family of so-called ElectroActive Polymers (EAP), currently being developed and studied as "artificial muscles". Dielectric elastomer actuation is drawing a particular interest because of its promise of simple and robust low-cost devices with overall performance exceeding most conventional technologies, such as electromagnetics and piezoelectrics. In fact, dielectric elastomer actuators have demonstrated strain and energy density exceeding that of all high-speed field-activated actuation technologies. Further, in addition to actuation, dielectric elastomers have also been shown to offer unique possibilities for improved generator and sensing devices. Dielectric elastomer transduction was introduced during the 1990s, pioneered by SRI International. Although the field is still being explored and expanded extensively, a great deal of work has already been done, with encouraging results. This technology is enabling today an enormous range of applications that were not possible with any other EAP or smart-material technology until a few years ago. For interested readers, this book is expected to provide a comprehensive and updated insight on this technology. The book covers all the fundamental aspects, comprising a collection of chapters written by the fathers of this technology, along with the most renowned international contributors in the field. The presented topics range from transduction principles, basic materials properties, design of devices, material and device modelling, up to possible applications and future research avenues. Such an extension of the covered topics is expected to make this text as the first reference handbook on dielectric elastomer transduction. Book jacket., This book provides a comprehensive and updated insight into dielectric elastomers; one of the most promising classes of polymer-based smart materials and technologies. This technology can be used in a very broad range of applications, from robotics and automation to the biomedical field. The need for improved transducer performance has resulted in considerable efforts towards the development of devices relying on materials with intrinsic transduction properties. These materials, often termed as "smart_ or "intelligent_, include improved piezoelectrics and magnetostrictive or shape-memory materials. Emerging electromechanical transduction technologies, based on so-called ElectroActive Polymers (EAP), have gained considerable attention. EAP offer the potential for performance exceeding other smart materials, while retaining the cost and versatility inherent to polymer materials. Within the EAP family, "dielectric elastomers_, are of particular interest as they show good overall performance, simplicity of structure and robustness. Dielectric elastomer transducers are rapidly emerging as high-performance "pseudo-muscular_ actuators, useful for different kinds of tasks. Further, in addition to actuation, dielectric elastomers have also been shown to offer unique possibilities for improved generator and sensing devices. Dielectric elastomer transduction is enabling an enormous range of new applications that were precluded to any other EAP or smart-material technology until recently. This book provides a comprehensive and updated insight into dielectric elastomer transduction, covering all its fundamental aspects. The book deals with transduction principles, basic materials properties, design of efficient device architectures, material and device modelling, along with applications. * Concise and comprehensive treatment for practitioners and academics * Guides the reader through the latest developments in electroactive-polymer-based technology * Designed for ease of use with sections on fundamentals, materials, devices, models and applications

Download ebook - Dielectric Elastomers As Electromechanical Transducers : Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (2008, Hardcover) DJV, FB2